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Abstract

In this work, we develop an approach to formation estimation by explicitly characterizing for-

mation’s system-theoretic attributes in terms of the underlying inter-spacecraft information-exchange

network. In particular, we approach the formation observer/estimator design by relaxing the accessibility

to the global state information by a centralized observer/estimator- and in turn- providing an analysis and

synthesis framework for formation observers/estimators that rely on local measurements. The novelty

of our approach hinges upon the explicit examination of the underlying distributed spacecraft network

in the realm of guidance, navigation, and control algorithmic analysis and design. The overarching goal

of our general research program, some of whose results are reported in this paper, is the development

of distributed spacecraft estimation algorithms that are scalable, modular, and robust to variations in

the topology and link characteristics of the formation information exchange network. In this work,

we consider the observability of a spacecraft formation from a single observation node and utilize the

agreement protocol as a mechanism for observing formation states from local measurements. Specifically,

we show how the symmetry structure of the network, characterized in terms of its automorphism group,

directly relates to the observability of the corresponding multi-agent system. The ramification of this
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notion of observability over networks is then explored in the context of distributed formation estimation.

Index Terms

Distributed space systems, networked systems, observability, automorphism group, agreement dynamics, alge-

braic graph theory.

I. INTRODUCTION

Distributed space systems rely on a signal transmission network among multiple spacecraft

for their operation. The network consists of relative sensing and inter-spacecraft communication,

which will be collectively referred to as the formation information exchange network. Control

and coordination among multiple spacecraft in the formation is facilitated via this network. The

dependency of the formation guidance, navigation, and control architecture on the underlying

formation network will be more pronounced as these formations become complex and their

science objectives dictate higher levels of precisions and dynamic reconfigurations. We will

develop a unified approach to formation estimation by explicitly characterizing formations system

theoretic attributes in terms of the underlying inter-spacecraft information-exchange network. In

particular, we approach the formation observer/estimator design by relaxing the accessibility to

the global state/control information- and in turn- provide an analysis and synthesis framework for

formation observers/estimators that rely on local and/or incomplete measurements. The novelty

of our approach hinges upon the explicit examination of the underlying distributed spacecraft

network in the realm of guidance, navigation, and control algorithmic analysis and design. The

main goal of this research is the development of distributed spacecraft estimation algorithms

that are scalable, modular, and robust to variations in the topology and link characteristics of

the formation information exchange network

A distributed spacecraft is a prime example of a networked dynamic system. A networked

system is a collection of dynamic units that interact over an information exchange network for

its operation. Such systems are ubiquitous in diverse areas of science and engineering. Examples

other than distributed space systems include physiological systems and gene networks [12], large

scale energy systems, and multiple space, air, and land vehicles [1], [2], [27], [38], [37]. There

is an active research effort underway in the control and dynamical systems community to study
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these systems and lay out a foundation for their analysis and synthesis [6], [7], [9]. As a result,

over the past few years, a distinct area of research at the intersection of systems theory and graph

theory has emerged. An important class of problems that lies at this intersection pertains to the

agreement or the consensus problem [4], [15], [28], [30], [39]. The agreement problem concerns

the development of processes by which a group of dynamic units, through local interactions,

reach a common value of interest. As such, the agreement protocol is essentially an unforced

dynamical system whose trajectory is governed by the interconnection geometry and the initial

condition for each unit.

Our goal in this paper is to utilize the agreement protocol as a mechanism for observing

formation states from local measurements. This accomplished by introducing nodes in the

agreement protocol that serve as observation posts for the dynamics. The network observability

from local measurements has not generally been considered in the literature- exceptions include

the work of Olfati-Saber and Shamma in the context of consensus filters [31]. However, the dual

of the observability problem, namely controllability of leader-follower multi-agent systems, has

recently been considered in by Tanner [36], Ji et al. [18], and Rahmani and Mesbahi [34]. In the

present work, we further explore the ramifications of this graph-theoretic outlook on multi-agent

systems observability. Specifically, we examine the role of the graph Laplacian eigenvectors

and the graph automorphism group for the observabilty of networks augmented with a single

observation post.

The paper begins with the general form of the agreement dynamics over networks. Next,

we introduce transformations that, given the location of the observation node, produce the

corresponding observed linear time-invariant system. The study of the observability for single-

observer systems is then pursued via tools from algebraic graph theory. In this avenue, we provide

a sufficient graphical condition in terms of graph automorphisms for the system’s unobservability.

The ramification of the above network-theoretic outlook toward observability is the explored in

the realm of formation estimation algorithms.

II. NOTATION AND PRELIMINARIES

In this section we recall some basic notions from graph theory, followed by the general setup

of the agreement problem for multi-agent networks.

July 21, 2008 DRAFT



4

A. Graphs and Their Algebraic Representation

Graphs are broadly adopted in the multi-agent literature to encode interactions in networked

systems. An undirected graph G is defined by a set VG = {1, . . . n} of nodes and a set EG ⊂

VG × VG of edges. Two nodes i and j are neighbors if (i, j) ∈ EG; the neighboring relation is

indicated with i ∼ j, while P(i) = {j ∈ VG : j ∼ i} collects all neighbors of node i. The

degree of a node is given by the number of its neighbors; we say that a graph is regular if all

nodes have the same degree. A path i0i1 . . . iL is a finite sequence of nodes such that ik−1 ∼ ik,

k = 1, . . . , L, and a graph G is connected if there is a path between any pair of distinct nodes.

A subgraph G ′ is said to be induced from the original graph G if it can be obtained by deleting

a subset of nodes and edges connecting to those nodes from G.

The adjacency matrix of the graph G, A(G) ∈ R
n×n , with n denoting the number of nodes

in the network, is defined by

[A(G) ]ij :=

⎧⎨
⎩

1 if (i, j) ∈ EG

0 otherwise.

If G has m edges and is given an arbitrarily orientation, its node-edge incidence matrix B(G) ∈

R
n×m is defined as

[B(G) ]kl :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if node k is the head of edge l

−1 if node k is the tail of edge l

0 otherwise,

where k and l are the indices running over the node and edge sets, respectively.

A matrix that plays a central role in many graph-theoretic treatments of multi-agent systems

is the graph Laplacian, defined by

L(G) := B(G)B(G)T ; (1)

thus the graph Laplacian is a (symmetric) positive semi-definite matrix. Let di be the degree of

node i and let D(G) := Diag([di]
n
i=1) be the corresponding diagonal degree matrix. It is easy to

verify that L(G) = D(G) −A(G) [11]. As the Laplacian is positive semi-definite, its spectrum

can be ordered as

0 = λ1(L(G)) ≤ λ2(L(G)) ≤ . . . ≤ λn(L(G)),
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with λi(L(G)) being the i-th ordered eigenvalue of L(G). It turns out that the multiplicity of the

zero eigenvalue of the graph Laplacian is equal to the number of connected components of the

graph [14]. In fact the second smallest eigenvalue λ2(L(G)) provides a judicious measure of the

connectivity of G. For more on the related matrix-theoretic and algebraic approaches to graph

theory we refer the reader to [5], [14].

B. Agreement Dynamics

Given a multi-agent system with n agents, we can model the network by a graph G where

nodes represent agents and edges are inter-agent information exchange links.1 Let xi(t) ∈ R
d

denote the state of node i at time t, whose dynamics is described by the single integrator

ẋi(t) = ui(t), i = 1, . . . , n,

with ui(t) being node i’s control input. Next, we allow agent i to have access to the relative state

information with respect to its neighbors and use it to compute its control. Hence, inter-agent

coupling is realized through ui(t). For example, one can let

ui(t) = −
∑
i∼j

(xi(t) − xj(t)). (2)

The localized rule in (2) happens to lead to the solution of the rendezvous problem, which has

attracted considerable attention in the literature [17], [8], [22]. Some other important networked

system problems, e.g., formation control [13], [3], [10], consensus or agreement [25], [29], [30],

and flocking [35], [32], share the same distributive flavor as the rendezvous problem.

The single integrator dynamics in conjunction with (2) can be represented as the Laplacian

dynamics of the form

ẋ(t) = −L(G)x(t), (3)

where x(t) = [x(t)T
1 , x(t)T

2 , . . . , x(t)T
n ]T denotes the aggregated state vector of the multi-agent

system, L(G) := L(G) ⊗ Id, with Id denoting the d-dimensional identity matrix, and ⊗ is the

matrix Kronecker product [16]. In fact, if the dynamics of the agent’s state is decoupled along

each dimension, the behavior of the multi-agent system can be investigated one dimension at a

1Throughout this paper we assume that the network is static. As such, the movements of the agents will not cause edges to

appear or disappear in the network.
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time. Although our results can directly be extended to the case of (3), in what follows, we will

focus on the system

ẋ(t) = −L(G)x(t), (4)

capturing the multi-agent dynamics with individual agent states evolving in R.

III. OBSERVABILITY OVER THE AGREEMENT PROTOCOL

We now endow an observation capability to a subset of agents in the Laplacian dynamics

(4); the other agents in the network, the observed nodes, continue to abide by the agreement

protocol. In this paper, we use subscripts o and ō to denote affiliations with observation nodes

and nodes that abide by their natural dynamics induced by the agreement protocol, respectively.

For convenience, we refer to the nodes that do not serve as observation posts as observed nodes;

thus the network is partitioned to observers and observed. For example, a graph Gp is the

subgraph induced by the observed nodes set Vp ⊂ VG . Observatability designations induce a

partition of incidence matrix B(G) as

B(G) =

⎡
⎣ Bp(G)

Bo(G)

⎤
⎦ , (5)

where Bp(G) ∈ R
np×m, and Bo(G) ∈ R

no×m. Here np and no are the cardinalities of the observed

and observer nodes, respectively, and m is the number of edges. The underlying assumption of

this partition, without loss of generality, is that observers are indexed last in the original graph

G. As a result of (1) and (5), the graph Laplacian L(G) is given by

L(G) =

⎡
⎣ Lp(G) lpo(G)

lpo(G)T Lo(G)

⎤
⎦ , (6)

where

Lp(G) = BpB
T
p , Lo(G) = BoB

T
o , and lpo(G) = BpB

T
o .

Here we omitted the dependency of B,Bp, and Bo on G, which we will continue to do whenever

this dependency is clear from the context. As an example, Figure 1 shows an observed network
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with Vo = {5, 6} and Vp = {1, 2, 3, 4}. This gives

Bp =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 −1 0 1 0 0

−1 1 0 0 0 0 0 −1

0 −1 1 0 0 0 1 0

0 0 −1 1 −1 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

, Bo =

⎡
⎣ 0 0 0 0 1 −1 0 0

0 0 0 0 0 0 −1 1

⎤
⎦ ,

and

Lp(G) =

⎡
⎢⎢⎢⎢⎢⎣

3 −1 0 −1

−1 3 −1 0

0 −1 3 −1

−1 0 −1 3

⎤
⎥⎥⎥⎥⎥⎦

, lpo(G) =

⎡
⎢⎢⎢⎢⎢⎣

−1 0

0 −1

0 −1

−1 0

⎤
⎥⎥⎥⎥⎥⎦

.

1 2

3 4

6
5

Fig. 1. An observed network with: Vp = {1, 2, 3, 4} and Vo = {5, 6}.

The networked system we now consider is the observed agreement dynamics, where the

observed nodes evolve through the Laplacian-based dynamics

ẋp(t) = −Lp xp(t) (7)

and the observer node, observe the rest of the network via the linear relationship

y(t) = lpoxp(t). (8)

Definition 3.1: Let the node ”o” be an observer node in G, i.e., o ∈ Vo(G). The indicator vector

with respect to node o,

δo : Vp → {0, 1}np ,
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is such that

δo(i) :=

⎧⎨
⎩

1 if i ∼ o

0 otherwise.

We note that each column of lpo is an indicator vector, i.e., lpo = [−δnp+1, . . . ,−δn].

Let dio, with o ∈ Vo, denote the number of observed nodes adjacent to the observer node o,

and define the observed-observer degree matrix

Dpo(G) := Diag([dio]
np

i=1), (9)

which leads to the relationship

Lp(G) = L(Gp) + Dpo(G), (10)

where L(Gp) is the Laplacian matrix of the observed graph Gp.

Remark 3.2: We should emphasize the difference between Lp(G) and L(Gp). The matrix Lp(G)

is the principle diagonal sub-matrix of the original Laplacian matrix L(G) related to the observed

nodes, while L(Gp) is the Laplacian matrix of the subgraph Gp induced by the observed nodes.

For simplicity, we will write Lp and lpo to represent Lp(G) and lpo(G), respectively, when their

dependency on G is clear from the context.

Since the row sum of the Laplacian matrix is zero, the sum of the i-th row of Lp(G) and that

of lpo(G) are both equal to dio, i.e.,

Lp(G)1np
= Dpo(G)1np

= −lpo(G)1no
, (11)

where 1 is a vector with ones at each component.

If there is only one observer node in the network, according to the indexing convention,

Vo = {n}. In this case, we have lpo(G) = −δn and Dpo(G) = Diag(δn). For instance, the

Fig. 2. Path graph with node “4” being the observer.
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indicator vector for the node set Vp = {1, 2, 3} in the graph shown in Fig. 2 with respect to the

observer {4} is δ4 = [ 1, 1, 0 ]T .

Proposition 3.3: If a single node is chosen to be the observer, the original Laplacian L(G) is

related to the Laplacian of the observed graph L(Gp) via

L(G) =

⎡
⎣ L(Gp) + Dpo(G) −δn

−δT
n dn

⎤
⎦ , (12)

where dn denotes the degree of agent n.

Another way to construct the system matrices Lp(G) and lpo(G) is from the Laplacian of the

original graph via

Lp = P T
p L(G) Pp and lpo = P T

p L(G) Tpo, (13)

where Pp ∈ R
n×np is constructed by eliminating the columns of the n × n identity matrix that

correspond to the observers, and Tpo ∈ R
n×no is formed by grouping these eliminated columns

in a new matrix. For example in Figure 1, these matrices assume the form

Pp =

⎡
⎣ I4

02×4

⎤
⎦ and Tpo =

⎡
⎣ 04×2

I2

⎤
⎦ .

Proposition 3.4: If a single node is chosen to be the observer, one has

Tpo = (In − P̃ )1n and lpo = −Lp1np

in (13), where P̃ = [Pp 0n×no
] is the n× n square matrix obtained by expanding Pp with zero

block of proper dimensions.

Proof: The first equality directly follows from the definition of Pp and Tpo. With out loss of

generality assume that the last node is the observer, then [ Pp Tpo ] = In. Multiplying both sides

by 1n and noting that P̃ 1n = Pp1np
, one has Tpo = (In − P̃ )1n.

Moreover,

lpo = P T
p L(G){(I − P̃ )1n}

= P T
p L(G)1n − P T

p L(G)Pp1np
.

The first term on the right-hand side of the equality is zero as 1 belongs to the null space of

L(G); the second term, on the other hand, is simply Lp1.
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IV. OBSERVABILITY ANALYSIS OF SINGLE-OBSERVER NETWORKS

In this part, we investigate the observability properties of single-observer networks. Following

our previously mentioned indexing convention, the index of the observer is assumed to be n.

For notational convenience we will subsequently identify matrices A and C with −Lp and lTpo,

respectively. Thus, the system (7) is specified by

ẋp(t) = Axp(t) and y(t) = Cxp(t). (14)

The observability of the observed agreement (14) can be investigated using PHB test [19].

Specifically, (14) is unobservable if and only if there exists an eigenvector ν of A, i.e., Aν = λν

for some λ, such that

Cν = 0.

Hence, the necessary and sufficient condition for observability of (14) is that none of the

eigenvectors of A should be simultaneously orthogonal to C. Additionally, in order to investigate

the observability of (14), one can form the observability matrix

O = [ CT (CA)T · · · (CAnp−1)T ]T . (15)

As A is symmetric it can be written in the form UΛUT , where Λ is the diagonal matrix

of eigenvalues of A; U on the other hand, is the unitary matrix comprised of A’s pair-wise

orthogonal unit eigenvectors. Since C = CUUT , by factoring the matrix U from the left in (15),

the observability matrix assumes the form

O =

⎡
⎢⎢⎢⎢⎢⎣

CU

CUΛ
...

CUΛnp−1

⎤
⎥⎥⎥⎥⎥⎦

UT . (16)

In this case, UT is full rank and its presence does not alter the rank of the matrix product in (16).

If one of the columns of U is perpendicular to all the columns of C, then O will have a row

equal to zero and hence rank deficient [36]. On the other hand, in the case of one observer, if

any two eigenvalues of A are equal, then O will have two linear dependent columns, and again,

the observability matrix becomes rank deficient. Assume ν1 and ν2 are two eigenvectors that

correspond to the same eigenvalue and none of them is orthogonal to C. Then ν = ν1 + cν2 is
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also an eigenvector of A for that eigenvalue. This will then allow us to choose c = −Cν1/Cν2,

that renders Cν = 0. In other words, we are able to find an eigenvector that is orthogonal to C.

Hence, we arrive at the following observation.

Proposition 4.1: Consider an observed network whose evolution is described by (14). This

system is observable if and only if none of the eigenvectors of A is (simultaneously) orthogonal

to C. Moreover, if A does not have distinct eigenvalues, then (14) is not observable.

Proposition 4.1 is also valid for the case with more than one observer and implies that in any

finite time interval, the state of the observed nodes can be monitored by the observers based on

local interactions with their neighbors.

Corollary 4.2: The networked system (14) with a single observer is observable if and only if

none of the eigenvectors of A is orthogonal to 1.

Proof: As shown in Proposition 3.4, the elements of C correspond to column-sums of A, i.e.,

C = −1T A. Thus, Cν = −1T Aν = −λ (νT 1). It can be shown that λ 	= 0. Thereby, Cν = 0

if and only if 1T ν = 0.

Proposition 4.3: If the networked system (14) is unobservable, there exists an eigenvector ν of

A such that
∑

i∼n ν(i) = 0.

Proof: Using Corollary 4.2, when the system is unobservable, there exists an eigenvector ν

orthogonal to 1. As

Aν = λ ν,

taking the inner product of both sides with 1, we obtain

1T ( Aν ) = 0.

Using Proposition 3.3 one obtains

νT {L(Gpo) + Dpo(G) } 1 = 0.

But L(Gpo)1 = 0 and thereby

νT Dpo(G) 1 = νT δn = 0,

or
∑
i∼n

ν(i) = 0.
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Proposition 4.4: Suppose that the observed system (14) is unobservable. Then one of the

eigenvectors of L(G) has a zero component on the index that corresponds to the observer node.

Proof: Let ν be an eigenvector of A that is orthogonal to 1 (by Corollary 4.2 such an eigenvector

exists). Attach a zero to ν; using the partitioning (12), we then have

L(G)

⎡
⎣ ν

0

⎤
⎦ =

⎡
⎣ A −δn

−δT
n dn

⎤
⎦

⎡
⎣ ν

0

⎤
⎦

=

⎡
⎣ λν

−δT
n ν

⎤
⎦ ,

where δn is the indicator vector of the observer’s neighbors. From Proposition 4.3 we know that

δT
n ν = 0. Thus

L(G)

⎡
⎣ ν

0

⎤
⎦ = λ

⎡
⎣ ν

0

⎤
⎦ .

In the other words, L(G) has an eigenvector with a zero on the index that corresponds to the

observer.

A direct consequence of Proposition 4.4 is the following.

Corollary 4.5: Suppose that none of the eigenvectors of L(G) has a zero component. Then the

observed system (14) is observable for any choice of the observer.

A. Observability and Graph Symmetry

The observability of the interconnected system not only depends on the geometry of the inter-

unit information exchange but also on the position of the observer with respect to the graph

topology. In this section, we examine the observability of the system in terms of graph-theoretic

properties of the network. In particular, we will show that there is intricate relation between

observability of (14) and the symmetry structure of the graph as captured by its automorphism

group. We first need to introduce a few useful constructs.

Definition 4.6: A permutation matrix is a {0,1}-matrix with a single nonzero element in each

row and column.

July 21, 2008 DRAFT



13

Definition 4.7: The observed system (14) is observer symmetric with respect to observer a, if

there exists a non-identity permutation J such that

JA = AJ, (17)

where A = −Lp = −P T
p L(G) Pp is constructed as in (13). We call the system asymmetric if it

does not admit such permutation for any anchor.

41 2 3

3 4

1 2

5

(a) (b)

Fig. 3. Interconnected topologies that are observer. symmetric: (a) only with respect to node {5}, (b) with respect to a observer

at any node.

As an example, the graph represented in Fig. 3(a) is observer symmetric with respect to {5} but

asymmetric with respect to any other observer node set. On the other hand, the graph of Fig.

3(b) is observer symmetric with respect to a single observer located at every node. The utility of

the notion of observer symmetry is now established through its relevance to the system theoretic

concept of observability.

Proposition 4.8: The observed system (14) is unobservable if it is observer symmetric.

Proof: If the system is observer symmetric then there is a non-identity permutation J such that

JA = AJ. (18)

Recall that by Proposition 4.1 if the eigenvalues of A are not distinct then (14) is not observable.

We thus consider the case where all eigenvalues λ are distinct and satisfy Aν = λν; thereby for

all eigenvalue/eigenvector pair (λ, ν) one has

JAν = J(λν).

Using (18) however,

A (Jν) = λ (Jν)
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and Jν is also an eigenvector of A corresponding to the eigenvalue λ. Given that λ is distinct

and A admits a set of orthonormal eigenvectors, we conclude that for one such eigenvector ν,

ν−Jν is also an eigenvector of A. Moreover, J C = JT C = C, as the elements of C correspond

to the column-sums of the matrix A, i.e., C = −1T A. Thereby,

C(ν − Jν) = Cν − JT Cν = Cν − Cν = 0. (19)

This, on the other hand, translates to having one of the eigenvectors of A, namely ν − Jν, to

be orthogonal to C. Proposition 4.1 now implies that the system (14) is unobservable.

Proposition 4.8 states that observer symmetry is a sufficient condition for unobservability of the

networked system (14). It is instructive to examine whether observer asymmetry leads to an

observable system.

Fig. 4. Asymmetric information topology with respect to the observer {a}. The subgraph shown by solid lines is the smallest

asymmetric graph.

Proposition 4.9: Observer symmetry is not a necessary condition for the system unobservability.

Proof: In Fig. 4, the subgraph shown by solid lines, Gp, is the smallest asymmetric graph [21],

in the sense that, it does not admit any non-identity automorphism. Let us augment this graph

with the node “a” and connect it to all vertices of Gp. Constructing the corresponding system

matrix A (i.e., setting it equal to −Lp(G)), we have

−A = L(Gp) + Dpo(G) = L(Gp) + I,

where I is the identity matrix of proper dimensions. Consequently, A has the same set of

eigenvectors as L(Gp). Since L(Gp) has an eigenvector orthogonal to 1, A also has an eigenvector

that is orthogonal to 1. Hence, the observed system is not observable. Yet, the system is not

symmetric with respect to a; more on this in Section IV-B.
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It is intuitive that a highly connected observer will result in faster convergence for the observer

to the state of the observed nodes. However, a highly connected observer also increases the

chances that a symmetric graph, with respect to observer, emerges. A limiting case for this

latter scenario is the complete graph. In such a graph, n − 1 observers are needed to make the

corresponding dynamic system, observable. This requirement is of course not generally desirable

as it means that the observer group include all nodes except for one node! The complete graph

is “the worse” case configuration as far its single-node observability properties. Generally at

most n− 1 observers are needed to make any information exchange network observable. In the

meantime, a path graph with a observer at one end is observable. Thus it is possible to make a

complete graph observable by keeping the links on the longest path between a observer and all

other nodes, deleting the unnecessary information exchange links to break its inherent symmetry.

This procedure is not always feasible; for example a star graph is not amenable to such graphical

alterations.

B. Observer Symmetry and Graph Automorphism

In Section IV-A we discussed the relationship between observer symmetry and observability.

In this section we will further explore the notion of observer symmetry with respect to graph

automorphisms.

Definition 4.10: An automorphism of G = (V , E) is a permutation ψ of its node set such that

(ψ(i) , ψ(j)) ∈ EG ⇐⇒ (i, j) ∈ EG.

The set of all automorphisms of G, equipped with the composition operator, constitutes the

automorphism group of G; note that this is a “finite” group. It is clear that the degree of a node

remains unchanged under the action of the automorphism group, i.e., if ψ is an automorphism

of G then dv = dψ(v) for all v ∈ VG .

Proposition 4.11 ([5]): Let A(G) be the adjacency matrix of the graph G and ψ a permutation

on its node set V . Associate with this permutation, the permutation matrix Ψ such that

Ψij :=

⎧⎨
⎩

1 if ψ(i) = j

0 otherwise.

Then ψ is an automorphism of G if and only if

ΨA(G) = A(G) Ψ.
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In this case, the least positive integer z for which Ψz = I is called the order of the automorphism.

Recall that from Definition 4.7 observer symmetry for (14) corresponds to having

JA = AJ,

where J is a non-identity permutation.From Proposition 3.3 however,

A = −(L(Gp) + Dpo(G)).

Thus using the identity L(Gp) = D(Gp) −A(Gp) one has

J {D(Gp) −A(Gp) + Dpo(G)}

= {D(Gp) −A(Gp) + Dpo(G)} J. (20)

Pre and post multiplication of (a permutation matrix) J , does not change the structure of diagonal

matrices. Also, all diagonal elements of A(G) are zero. We can thereby rewrite (20) as two

separate conditions,

JDp(G) = Dp(G) J and JA(Gp) = A(Gp)J, (21)

with Dp(G) := D(Gp) + Dpo(G). The second equality in (21) states that sought after J in (17)

is in fact an automorphism of Gp.

Proposition 4.12: Let Ψ be the permutation matrix associated with ψ. Then ΨDp(G) = Dp(G) Ψ

if and only if

di + δn(i) = dψ(i) + δn(ψ(i)).

In the case where ψ is an automorphism of Gp, this condition simplifies to

δn(i) = δn(ψ(i)).

Proof: Using the properties of permutation matrices, one has

[ΨDp(G)]ik =
∑

t

ΨitDtk =

⎧⎨
⎩

dk + δn(k) if i → k

0 otherwise,

and

[Dp(G)Ψ]ik =
∑

t

Dit Ψtk =

⎧⎨
⎩

di + δn(i) if i → k

0 otherwise.
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For these matrices to be equal element-wise, one needs to have di + δn(i) = dk + δn(k) when

ψ(i) = k. The second statement in the proposition follows from the fact that the degree of a

node remains invariant under the action of the automorphism group.

The next two results follow immediately from the above discussion.

Proposition 4.13: The interconnected system (14) is observer symmetric if and only if there is

a non-identity automorphism for Gp such that the indicator function remains invariant under its

action.

Corollary 4.14: The interconnected system (14) is observer asymmetric if the automorphism

group of the observed subgraph only contains the trivial (identity) permutation.

C. Observability of special graphs

In this section we investigate the observability of ring and path graphs.

Proposition 4.15: A ring graph, with only one observer, is never observable.

Proof: With only one observer in the ring graph, the observed graph Gp becomes the path-

graph with one non-trivial automorphism, i.e., its mirror image. Without loss of generality,

choose the first node as the observer and index the remaining observed nodes by a clock-wise

traversing of the ring. Then the permutation i → n − i + 2 for i = 2, . . . n, is an automorphism

of Gp. In the meantime, the observer “1” is connected to both node 2 and node n; hence

δn = [ 1, 0, · · · , 0, 1 ]T remains invariant under the permutation. Using Proposition 4.13, we

conclude that the corresponding system (14) is observer symmetric and thus unobservable.

Proposition 4.16: A path graph is observable for any choice of observer if and only if it is of

even order.

Proof: Suppose that the path graph is of odd order; then choose the middle node “n+1
2
”, as

observer. Note that ψ(k) = n − k + 1 is an automorphism for the floating subgraph. Moreover,

the observer is connected to nodes n+1
2

− 1 and n+1
2

+ 1, and ψ(n+1
2

− 1) = n+1
2

+ 1. Thus

δn = [ 0, · · · , 0, 1, 1, 0, · · · 0 ]T

remains invariant under the permutation ψ and the system is unobservable. The converse state-

ment follows analogously.

July 21, 2008 DRAFT



18

Hence although in general observer symmetry is sufficient- yet not necessary- condition for

unobservability of (14), it is necessary and sufficient for unobservability of the path graph.

Corollary 4.17: A path graph with a single observer is observable if and only if it is observer

asymmetric.

V. FORMATION ESTIMATION VIA LOCAL INFORMATION-EXCHANGE

In this section, we consider a scenario where a group of spacecraft reach a desired formation

via a neighboring information-exchange mechanism. During this process, one of the nodes in the

network serves as the observation node and has access to local measurement of its neighboring

spacecraft state(s).

Consider the agreement protocol with the Laplacian of the information exchange network

partitioned in the form defined in (12). It is assumed that a Laplacian-based formation control

algorithm is running on the spacecraft fleet with change of variable from x to x− xr, where xr

specifies the desired formation configuration. We can then write the equation of motion of the

formation in the form of an LTI system as

ẋ(t) = Ax(t) + Bu(t) + Dzr

y(t) = Cx(t) (22)

where

A = −L(Gp) + Dpo(G), B = δn, D = [Bp δn],

and C = δT
n denotes the local observation geometry accessible to the observer node.

Here we assume that the formation is not controlled by exogenous signals from the observation

post, that is, u = 0. The term zr refers to the desired relative formation and is calculated from

desired final configuration via

zr =

⎡
⎣ Bp δf

0 −1

⎤
⎦ xr.

The discretized model of (22) in presence of measurement and process noise, assumes the form
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x(k + 1) = Āx(k) + D̄zr + v(k),

y(k) = C̄x(k) + w(k), (23)

where v and w are zero mean Gaussian processes with covariances Q and R, respectively.

In the proposed setup, the observer spacecraft runs a discrete Kalman filter to estimate the

entire state of the spacecraft formation. Between the communication or measurement steps, the

estimate of the formation state and its covariance evolve according to

x(k + 1−) = Ā x(k+) + D̄zr

P (k + 1−) = Ā P (k+) ĀT + Q. (24)

At each communication step, the Kalman gain is computed and state estimate and covariance

matrix are updates according to

K(k) = P (k−)C̄T (C̄ P (k−) C̄T + R)−1

x̂(k+) = x̂(k−) + K(k)(y(k) − C̄x̂(k−)) (25)

P (k+) = P (k−) − K C̄ P (k−).

Here we should emphasis that the observability of the system from the observer node guarantees

the convergence of the Kalman filter as it operates on a local information-exchange mechanism

induced by the observed formation.We also like to point out that, rather counter-intuitively, more

information-exchange capability for the formation does not always translate to a more observable

network. Figure (5) depicts a few examples of unobservable networks on a distributed space

system consisting of seven spacecraft.

We have simulated the proposed formation estimation algorithm on a group of seven spacecraft

moving to a desired formation. In each scenario, we used a different observation post and

estimated the state of the whole system viewed from the observer spacecraft, accessing only

local measurement of its neighboring nodes.

Figure (6) shows two of the formations considered in our simulations. Figure (7) depicts the

state estimation error for these two networks as the percentage of the formation size in the
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(a) (b) (c)

Fig. 5. Unobservable formations.

(a) (b)

Fig. 6. Observable formations.

presence of, respectively, 5% and 10% Gaussian measurement and process noise variances.

As one can see from this example, the estimation error decreases rapidly and reaches the

corresponding measurement error bound. We also note that the path network is slower to reach

the desired error bound, exhibiting an inherit delay in information fusion associated with its

large diameter.

VI. CONCLUSIONS

In this paper, we considered the observability of a distributed space system from a single

observation node. Such global observability property has been facilitated via a local protocol

induced by the agreement protocol. We first derived a set of transformations that could be

employed to derive the system matrices for scenarios where one or more of the nodes serve as

observation nodes. The other nodes in the graph (the observed nodes) are assumed to update

their states according to their relative states with their neighbors. In such a setting, we studied
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the observability of the resulting dynamic system. We then showed that there is a intricate

relationship between the unobservability of the corresponding multi-agent system and various

network-theoretic properties of the network. In particular, we pointed out the importance of the

network automorphism group in the observability properties of distributed and interconnected

systems. The ramifications of this correspondence were then explored in the context of distributed

estimation for multiple spacecraft systems that operate on a local-information exchange mecha-

nism. The results of the present work point to a promising research direction at the intersection

of space systems, networks, and estimation theory that aims to study estimation and control

issues for multiple spacecraft systems from a network-theoretic outlook.
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(a)

(b)

Fig. 7. State estimation error in terms of the percentage of the formation size: (a) for the network shown in Fig. 6(a), (b) for

the network shown in Fig. 6(b).
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